Markov Chain Models for Delinquency: Transition Matrix Estimation and Forecasting

نویسندگان

  • Scott D. Grimshaw
  • William P. Alexander
چکیده

A Markov chain is a natural probability model for accounts receivable. For example, accounts that are “current” this month have a probability of moving next month into “current”, “delinquent” or “paid-off” states. If the transition matrix of the Markov chain were known, forecasts could be formed for future months for each state. This paper applies a Markov chain model to subprime loans that appear neither homogeneous nor stationary. Innovative estimation methods for the transition matrix are proposed. Bayes and empirical Bayes estimators are derived where the population is divided into segments or subpopulations whose transition matrices differ in some, but not all entries. Loan-level models for key transition matrix entries can be constructed where loan-level covariates capture the nonstationarity of the transition matrix. Prediction is illustrated on a $7 billion portfolio of subprime fixed first mortgages and the forecasts show good agreement with actual balances in the delinquency states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Forecasting time and place of earthquakes using a Semi-Markov model (with case study in Tehran province)

The paper examines the application of semi-Markov models to the phenomenon of earthquakes in Tehran province. Generally, earthquakes are not independent of each other, and time and place of earthquakes are related to previous earthquakes; moreover, the time between earthquakes affects the pattern of their occurrence; thus, this occurrence can be likened to semi-Markov models. ...

متن کامل

Development of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption

Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area.  Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption.  This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...

متن کامل

Forecasting with non-homogeneous hidden Markov models

We present a Bayesian forecasting methodology of discrete-time finite statespace hidden Markov models with non-constant transition matrix that depends on a set of exogenous covariates. We describe an MCMC reversible jump algorithm for predictive inference, allowing for model uncertainty regarding the set of covariates that affect the transition matrix. We apply our models to interest rates and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009